X3716/92-0085 = WG21/N0162 Page 1

Doc Number: X3J16/92-0085

WG21/N0162
Date: August 4, 1992
Project: Programming Language C++
Ref Docs: X3J116/92-0060, 92-0064
Reply to: Samuel C. Kendall
CenterLine Software, Inc.
kendall@centerline.com

Qualifiers in Overriding Return Types of Virtual Functions
- Samuel C. Kendall

1. Introduction

We propose first an editorial change, then a small extension. The extension subsumes the editorial change.

The extension is to allow the retum type of the derived virtual member function to omit qualifiers that are in the
return type of the base virtual member function. This extension is type-safe, simple to implement, and useful.

2. Editorial Change Proposal
The current WP (working paper), 92-0060, does not allow the following example:

class A (
public:
virtual const A* ro_clone();
Y
class B : public A {
public:
const B* ro_clone(); // error according to 10.2
}i

This should be allowed. The problem is that qualifiers are not discussed in §10.2.
The fix: In §10.2p1, CHANGE the sentence:

It is an error for the return type

TO (new words are in boldface):

It is an error for the return type of an overriding function to differ from the return type of
the overridden function unless the return type of the overridden function is a pointer or
reference to a possibly-qualified class B, and the return type of the overriding function is
a pointer or reference (respectively) to an identically-qualified class that is either B or
publicly derived (directly or indirectly) from B.

This change is similar to editorial changes I proposed (on x3j16-edit) in §§4.6p1, 4.7p1, 13.4p6, 13.4.6pl, and
134.7pl.

135

Page 2 X3J16/92-0085 = WG21/N0162

3. Extension Proposal

3.1 Introduction

The extension is to allow the return type of the derived virtual member function to omit qualifiers that are in the
return type of the base virtual member function. For example, the extension would permit the following code:

class A;
class B {
public:
virtual const A* £();
virtual volatile A* g{();
Yi
class D : public B (
A* £();
a* g();

3.2 Rationale

3.2.1 Implementation

The code generation and run-time aspects of this extension are trivial to implement, since the representation of an A*
is identical to that of a const A*or avolatile A* on most (probably all) systems.

Of course, in the front end there is a slight additional complication (in order to implement the revised §10.2p1). I
think this cost is negligible.

3.2.2 Type-Safety

The extension is type-safe. We argue this first for the const qualifier, then for the volat ile qualifier. For these
cases consider the code above along with the following function calls:

B* bp;

const A* cap = bp->f();

volatile A* vap = bp->g();
For the const qualifier: the caller expects a const A* butD: : £ returns an A*. The const qualifier means that

the caller is (more or less) promising not to modify the pointed-to object. D: : £ returns a pointer to an object that can
be modified, but there is no conflict; the caller will not modify the object even though it is allowed to.

For the volatile qualifier: the argument is similar to that for const. The caller expects a volatile A* but

D: :g retuns an A*. The ‘volatile’ qualifier means that the caller is (more or less) promising to avoid certain optimi-
zations in accessing the pointed-to object. D: : £ returns a pointer to an object that can be accessed with those optimi-
zations, but there is no conflict; the caller will not perform the optimizations even though it is allowed to.

More pedantically, we note that A is a subtype of const A. (A subtype, but not a subclass.) The same can be argued
of Aand volatile A, though I omit the argument here.

3.2.3 Utility

All the examples in 92-0064 are of clone-like functionality. Here I introduce a different idiom: that of a hierarchy of
interface classes. A derived interface class offers more access than the base interface class (this is a form of progres-
sive disclosure). One kind of “more access™ is to allow writing.

For example:

156 -

X3J16/92-0085 = WG21/N0162 Page 3

class car;
class engine;
class normal_interface (
public:
normal_interface(car?*);
const engine* get_engine():;
Y i
class mechanic_interface : public normal_interface {
public:
mechanic_interface(car*);
engine* get_engine();
}:
normal_interface and mechanic_interface are interfaces to a car. A normal interface allows inspec-
tion, but not modification, of the engine. A mechanic interface allows modification as well.

The cast for const, then, is straightforward.

The case for volatile is less compelling, simply because volatile is not as commonly used. But it should be
allowed for symmetry.

3.3 Proposed Wording for the Working Paper
In §10.2p1, CHANGE the sentence
It is an error for the return type

TO (new words are in boldface):

It is an error for the return type of an overriding function to differ from the return type of
the overridden function unless the return type of the overridden function is a pointer or
reference to a possibly-qualified class B, and the return type of the overriding function is
a pointer or reference (respectively) to an identically-qualified or less-qualified class
that is either B or publicly derived (directly or indirectly) from B.

The term less-qualified must be defined somewhere. A type T is less qualified than a type U if T’s qualifiers are a
proper subset of U’s qualifiers.

157

SC22/N1218

7. Meeting Schedule
Date

Nov 1-6, 1992

Mar 7-12, 1993

Jul 11-16, 1993
Nov 7-12, 1993

Mar 6-11, 1994

8. Issues for Discussion

WG21, C++, Convener’s Report

Location

Boston, MA

Portland, Oregon -

Munich, Germany
Asilomar, CA or
Palo Alto, CA

San Diego, CA

8.1 Standards Development Procedures

National Standards Bodies
ANSI

ANSI

DIN
ANSI

ANSI

Corporate Sponsors
OSF

Mentor Graphics
Sequent Computer, and
Tektronix

Siemens Nixdorf
Apple or

Taligent

Taumetric

page 4

WG21 feelings are swrongly against approval of "Procedures for accelerating the developmen: of Standards,
JTC1/SC22/N118 and WG21 has endorsed the convener’s comments, WG21/N0127 also known as SC22/N1161.

In addition, WG21 has requested that the convener identify this issue as a point for discussion before SC22.

8.2 Language Independent Stam‘iérds Conformance

WG21 is of the opinion that conformance to language independent standards needs 10 be defined. This could entail
answering the following questions:

a. What does conformance mean? Is it providing one or more appendices describing differences and similarities
between the language standard and the several language independent standards? Is it implementing the
specifications of the several language independent standards and, if so, which ones or all, and are they of the
language development group’s choosing or designated by SC22?

b. When must language independent standards conformance be com

groups?

. Which languages must conform to language independent standards? Is it u

working groups or will the languages be designated by SC22?

9. Acknowledgements

I offer special thanks to Dan Saks, WG21 and X3J16 Secre

could not have provided this summary.

158

S SZS

Steven L. Carter
Convener

WG21, C++ Working Group

pleted by language development working

p to the language development

tary, for providing superb minutes, without which, I

